6.1.1 The multiplication rule

1. There are 3 routes joining village A and village B and 4 routes joining village B and village C. Find the number of different ways of traveling from village A to village C via village B.	2. There are 2 bus companies that provide transport from town E to town F and 3 bus companies that provide transport from town F to town G. Find the number of ways a person can travel from town E via to town G via town F by taking a bus.
3. There are 3 boys and 2 girls in a group. Find the number of ways to pick a boy and a girl for a Mathematics quiz.	4. Lim has to choose a shirt and a trouser from 6 shirts and 4 trousers in his cupboard. Find the possible number of ways he can do this.
5. Team A which consists of 5 players wishes to have badminton matches with team B which consists of 6 players. Find the number of different single matches that can be held.	6. A B C D 1 2 3 The diagram above shows cards of a game. If a player is going to select a letter card and a digit card, find the number of different ways can this be done.
7. Hashim can choose to go to office by car or by bus. Find the number of different ways Hashim can go to school for three consecutive working days.	8. A football team plays four friendly matches in a month. Find the number of possible outcomes from the four matches.
9. There are 5 Malays, 3 Chinese and 2 Indians in a group. Find the number of ways can a Malay, a Chinese and an Indian be chosen from the group.	10.There are 2 pieces of cakes on plate $\mathrm{A}, 3$ pieces of cakes plate B and 4 pieces of cakes on plate C. If a boy is going to select a cake from each plate, find the number of different ways can this be done.

6.1.2 Permutations of \mathbf{n} different objects.

1. In how many different ways can 5 different books be arranged on a shelf?
2. In how many different ways can 4 different presents can be given to 4 children ?
3. In how many ways can the letters of the word 'CLOSE' be arranged ?
4. In how many ways can the letters of the word 'POCKET' be arranged ?
5. In how many ways can the letters of the word 'SECTION' be arranged ?
6. In how many ways can the letters of the word
'GRADIENT' be arranged ?
[40320]
7. How many five-digit numbers can be formed using the digits $2,3,7,8$ and 9 without repetition?
8. How many different passwords can be formed using the letters A, B , C and digits 8 and 9 without repetition?
10.How many different passwords can be formed using the letters $\mathrm{E}, \mathrm{F}, \mathrm{G}, \mathrm{H}$ and symbols α, β and λ without repetition?

6.1.3 Permutations of \mathbf{n} different objects taken \mathbf{r} at a time.

| 1. In how many ways can 6 students be seated on 3
 chairs arranged in a row ? | 2. There are 8 contestants in a drawing contest. How
 many possible ways for the first three places to be
 won by the contestants ? |
| :--- | :--- | :--- |

6.1.4 Permutations of \mathbf{n} different objects under given conditions.

1. In how many ways can all the letters in the word 'SECTION' be arranged without repetition such that the first letter is vowel?
2. In how many ways can all the letters in the word 'SECTION' be arranged without repetition such that the first letter is consonant?
[2160]
3. In how many ways can all the letters in the word 'SECTION' be arranged without repetition such that the first and last letters are vowels ?
4. In how many ways can all the letters in the word 'SECTION' be arranged without repetition such that the three letters in the middle are vowels?
5. In how many ways can all the letters in the word 'SECTION' be arranged without repetition such that the first letter is E and last letter is T ? consonant?
6. In how many ways can all the letters in the word 'SECTION' be arranged without repetition such that the vowels separated from each other?

| 9. How many five-digit even numbers that can be
 formed using the digits $2,3,4,6$ and 7 without
 repetition. | 10. How many five-digit odd numbers that can be
 formed using the digits $2,3,4,6$ and 7 without
 repetition. |
| :--- | :--- | :--- |
| 11. How many five-digit numbers that are greater than
 40000 can be formed using the digits 2, 3, 4, 6 and
 7 without repetition. | 12. How many five-digit numbers that are smaller than
 can be 40000 formed using the digits 2, 3, 4, 6 and
 7 without repetition. |

6.1.5 Permutations of \mathbf{n} different objects taken r at a time under given conditions.

1. How many four-letter codes can be formed using the letters in the word 'WINSDOM' without repetition such that the first letter is vowel?
2. How many four-letter codes can be formed using the letters in the word 'WINSDOM' without repetition such that the first letter is consonant?
[240]
3. How many four-letter codes can be formed using the letters in the word 'WINSDOM' without repetition such that the first letter and the last letter are vowels ?
4. How many four-letter codes can be formed using the letters in the word 'WINSDOM' without repetition such that the first letter and the last letter are consonants?
5. How many four-letter codes can be formed using the letters in the word 'WINSDOM' without repetition such that the first letter is a vowel and the last letter is a constant?
6. How many four-letter codes can be formed using the letters in the word 'WINSDOM' without repetition such that the first letter is S and the last letter is D ?
[200]
7. How many five-letter codes can be formed using the letters in the word 'WINSDOM' without repetition such that the vowels placed adjacent to each other?
8. How many four-letter codes can be formed using the letters in the word 'WINSDOM' without repetition such that the vowels separated from each other?

6.2.1 Combinations of r different objects chosen from n different objects.

6.2.2 Combinations of \mathbf{r} different objects chosen from \mathbf{n} different objects under given conditions.

1. They are a couple in a group of 10 people. In how many ways can a team of 5 people be formed from the group if the couple must be included?
2. They are monitor and assistant monitor in a group of 20 students. In how many ways can a committee of 8 people be formed from the group if the monitor and assistant monitor must be included ?
3. Find the number of ways of choosing 4 letters including the letter O from the word 'OBJECT'.
4. Find the number of ways of choosing 4 letters including the letter A from the word 'IMAGE'.
5. Find the number of ways of choosing at least 3 students from 5 students to represent their class in a Mathematics Quiz.
6. Find the number of ways of choosing at least 1 colour from 3 colours to paint the poster.
7. In a class of 8 boys and 6 girls, 4 boys and 3 girls or 3 boys and 4 girls are to be chosen to form a committee. In how many ways can the committee be formed?
8. In a group of 10 men and 8 women, 5 men and 4 women or 4 men and 5 women are to be chosen to form a committee. In how many ways can the committee be formed ?
9. 12 students are divided into three groups that consists of 5, 4 and 3 students respectively. Find the number of ways of forming the three groups.
10. 10 students are divided into three groups that consists of 5, 3 and 2 students respectively. Find the number of ways of forming the three groups.
11.A committee that consists of 6 members is to be selected from 7 teachers and 5 parents. Find the members of different committees that can be formed if the number of teachers must same as the number of parents.
12.A committee that consists of 8 members is to be selected from 9 men and 7 women. Find the members of different committees that can be formed if the number of men must same as the number of women.
14.A committee that consists of 8 members is to be selected from 9 men and 7 women. Find the members of different committees that can be formed if it consists of not more than 2 men.
11. A committee that consists of 6 members is to be selected from 7 teachers and 5 parents. Find the members of different committees that can be formed if it consists of at least 4 teachers.
16.A committee that consists of 8 members is to be selected from 9 men and 7 women. Find the members of different committees that can be formed if it consists of at least 6 men.
12. A committee that consists of 6 members is to be selected from 7 teachers and 5 parents. Find the members of different committees that can be formed if it consists of at most 2 teachers.
18.A committee that consists of 8 members is to be selected from 9 men and 7 women. Find the members of different committees that can be formed if it consists of at most 2 men.
