3. INTEGRATION

UNIT 3.1.1 Basics

• Integration is the reverse of differentiation

1. Since
$$\frac{d}{dx}(x^2 + c) = 2x$$
, $\int 2x \, dx = x^2 + c$
2. Since $\frac{d}{dx}(10x + c) = 10$, $\int 10 \, dx = 10x + c$

1. Given
$$\frac{d}{dx}(x^3 + c) = 3x^2$$
, find $\int 3x^2 dx$.
 $\int 3x^2 dx = \int \left(\frac{d}{dx}(x^3 + c)\right)$
 $= x^3 + c$
3. Given $\frac{d}{dx}\left(\frac{1}{2}x^6 + c\right) = 3x^5$, find $\int 3x^5 dx$.
4. Given $\frac{d}{dx}\left(\frac{2}{x} + c\right) = -\frac{2}{x^2}$, find $\int -\frac{2}{x^2} dx$.
5. Given $\frac{d}{dx}(4x^3) = f(x)$, find $\int f(x) dx$.
6. Given $\frac{d}{dx}(100x + c) = h(x)$, find $\int h(x) dx$.
7. Given $\frac{d}{dx}\left(\frac{2}{x-3}\right) = g(x)$, find $\int g(x) dx$.
8. Given $\frac{d}{dx}\left(\frac{2x}{x+1}\right) = f(x)$, find $\int f(x) dx$.
9. Given $\frac{d}{dx}(x(x+2)^3 dx) = w(x)$, find $\int g(x) dx$.
10. Given $\frac{d}{dx}[(x-3)(x+2)] = p(x)$, find $\int p(x) dx$.

UNIT 3.1.2 (a) Integration of
$$x^{n}$$
:

$$\int x^{n} dx = \frac{x^{n+1}}{n+1} + c, \quad n \neq -1$$
1. $\int x^{3} dx = \frac{x^{3+1}}{3+1} + c$

$$= \frac{x^{4}}{4} + c$$
2. $\int x^{5} dx =$
3. $\int x^{9} dx =$
4. $\int x^{-3} dx =$
5. $\int x^{-2} dx =$
6. $\int x dx =$
Integration
1

UNIT 3.1.2 (b) Integration of ax^n :

$$\int ax^{n} dx = \frac{ax^{n+1}}{n+1} + c , \quad n \neq -1$$

Note :
$$\int m \, dx = mx + c \quad , \text{ m a constant}$$
1.
$$\int 6x^3 \, dx = 6 \cdot \frac{x^{s+1}}{3+1} + c = 6 \cdot \frac{x^{s}}{4} + c = \frac{3x^4}{2} + c$$
2.
$$\int 10x^4 \, dx = 8 \cdot \frac{x^{s+1}}{2} + c = 6 \cdot \int -3dx = 2 \cdot \int -3dx = 6 \cdot \int -3dx = 6 \cdot \int -3dx = 2 \cdot \int -3dx =$$

UNIT 3.1.3 To Determine Integrals of Algebraic Expressions. Note : Integrate term by term. Expand & simplify the given expression where necessary.

Example:
$$\int (3x^{2} - 4x + 5)dx = \frac{3x^{3}}{x} - \frac{4x^{3}}{2} + 5x + c$$

$$= \frac{3x^{3} - 2x^{2} + 5x + c}{x^{2} - 2x^{2} + 5x + c}$$
1.
$$\int (6x - 4)dx = \frac{2}{x} \int (12x^{2} + 8x - 1)dx = \frac{3}{x} \int (x^{3} - 3x + 2)dx$$

$$= \frac{3}{x} \int (2x - 1)(2x + 1)dx = \frac{3}{x} \int (x + 2)(x - 3)dx$$

$$= \frac{3}{x} \int \frac{3}{x} - 2x^{2}dx = \frac{3}{x} \int \frac{(2x - 1)(2x + 1)}{x^{2}}dx = \frac{3}{x} \int \frac{6x^{2} - 4}{x^{3}}dx$$

$$= \frac{3}{x} \int \frac{(3x - 4)^{3}}{x^{2}}dx = \frac{3}{x} \int \frac{(2x - 1)(2x + 1)}{x^{2}}dx = \frac{3}{x} \int \frac{6x^{2} - 4}{x^{3}}dx$$

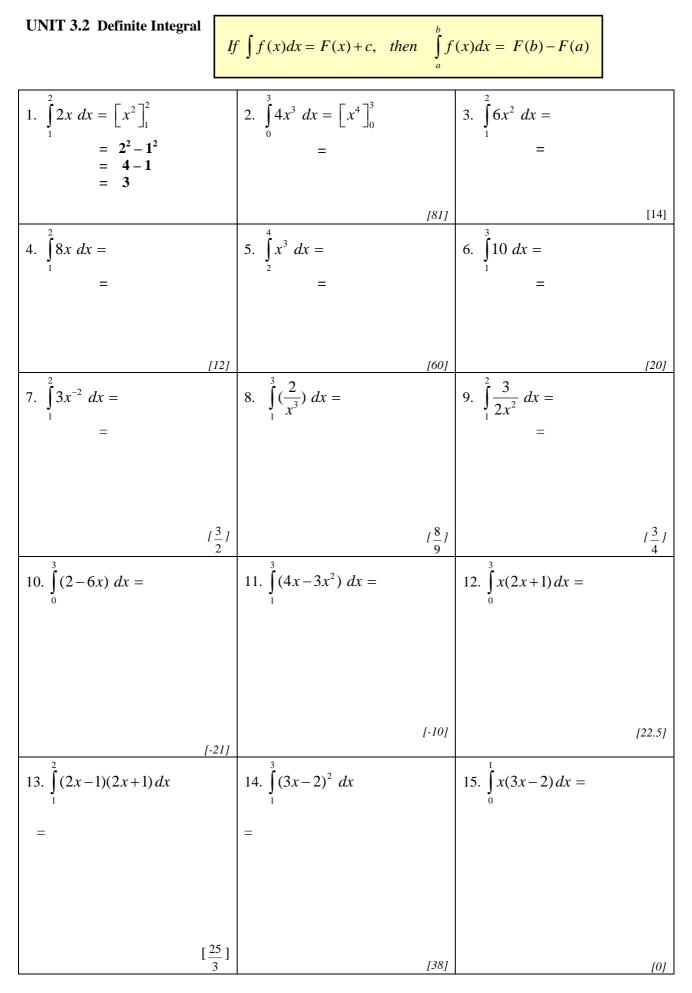
$$= \frac{3}{x} \int \frac{(3x + 4)^{3}}{x^{2}}dx = \frac{3}{x} \int \frac{(2x - 1)(2x + 1)}{x^{2}}dx = \frac{3}{x} \int \frac{6x^{2} - 4}{x^{3}}dx$$

$$= \frac{3}{x} \int \frac{(3x + 4)^{3}}{x^{2}}dx = \frac{3}{x} \int \frac{(2x - 1)(2x + 1)}{x^{2}}dx = \frac{3}{x} \int \frac{(2x - 1)(2x - 1)(2x + 1)}{x^{2}}dx = \frac{3}{x} \int \frac{(2x - 1)(2x - 1)(2x - 1)}{x^{2}}dx = \frac{3}{x} \int \frac{(2x - 1)(2x - 1)(2x - 1)}{x^{2}}dx = \frac{3}{x} \int \frac{(2x - 1)(2x - 1)(2x - 1)}{x^{2}}dx = \frac{3}{x} \int \frac{(2x - 1)(2x - 1)(2x - 1)}{x^{2}}dx = \frac{3}{x} \int \frac{(2x - 1)(2x - 1)(2x - 1)}{x^{2}}dx = \frac{3}{x} \int \frac{(2x - 1)(2x - 1)(2x - 1)}{x^{2}}dx = \frac{3}{x} \int \frac{(2x - 1)(2x - 1)(2x - 1)}{x^{2}}dx = \frac{3}{x} \int \frac{(2x - 1)(2x - 1)(2x - 1)}{x^{2}}dx = \frac{3}{x} \int \frac{(2x - 1)(2x - 1)(2x - 1)}{x^{2}}dx = \frac{3}{x} \int \frac{(2x - 1)(2x - 1)(2x - 1)}{x^{2$$

	Example		Exercise
1	SPM 2003, K2, S3(a) 3 Marks	2	
	-		Given $\frac{dy}{dx} = 2x + 3$ and $y = 4$ when $x = 1$, find y in
	Given $\frac{dy}{dx} = 2x + 2$ and $y = 6$ when $x = -1$,		terms of x.
	dx find y in terms of x.		
	-		
	Answer: $\frac{dy}{dx} = 2x + 2$		
	$y = \int (2x+2)dx$		
	$2x^{2}$		
	$= \frac{2x^2}{2} + 2x + c$		
	$v = r^2 + 2r + c$		
	$y = 6$ $x = 1$ $6 = 1^2 + 2(1) + 6$		
	y = 6, x = 1, y = $\begin{pmatrix} 2 \\ x^2 + 2x + c \\ 6 = \\ c = \\ 3 \end{pmatrix}$		
	c = 3		
	Hence $c = 3$ $y = x^2 + 2x + 3$		
			$y = x^2 + 3x$
3	Given $\frac{dy}{dx} = 4x + 1$ and $y = 4$ when $x = -1$,	4	Given $\frac{dy}{dt} = 6x - 3$ and $y = 3$ when $x = 2$, find y in
	dx = 4x + 1 and $y = 4$ when $x = 41$, dx		dx = 0x - 5 and $y = 5$ when $x - 2$, find y in dx
	find y in terms of x.		terms of x.
	dy		
	Answer : $\frac{dy}{dx} = 4x + 1$		
	$y = \int (4x+1) dx$		
	$y = \int (-x + 1) dx$		
	=		
	$2^2 \cdots 2^{2}$		
	$y = 2x^2 + x + 3$		$y = 3x^2 - 3x - 3$
5	Given $\frac{dy}{dx} = 4 - 2x$ and $y = 5$ when $x = 1$, find	6	Given $\frac{dy}{dx} = 3x^2 - 2$ and $y = 4$ when $x = -1$, find y in
	Given $\frac{dx}{dx} = 4 - 2x$ and $y = 5$ when $x = 1$, find		Given $\frac{dx}{dx} = 3x - 2$ and $y = 4$ when $x = -1$, find y in
	y in terms of x.		terms of x.
	··· 4·· 2·2		
7	$y = 4x - x^2 + 2$	8	$y = x^3 - 2x + 3$
,	Given $\frac{dy}{dx} = 3(2x - 4)$ and $y = 30$ when $x = -$		Given $\frac{dy}{dx} = 2 - \frac{3}{x^2}$ and $y = 1$ when $x = -1$, find
	2, find y in terms of x.		y in terms of x.
			$y = 2x + \frac{3}{x} + 6$
	$y = 3x^2 - 12x - 6$		

UNIT 3.1.4 To Determine the Constant of Integration (I)

	Example		Exercise
1		2	Given $\frac{dy}{dx} = 2x + 5$ and $y = 1$ when $x = -1$, find
	Given $\frac{dy}{dx} = 6x - 4$ and $y = 2$ when $x = -1$,		ax
	find the value of y when $x = 2$.		the value of y when $x = 3$.
	Answer: $\frac{dy}{dx} = 6x - 4$		
	$y = \int (6x - 4) dx$		
	$= \frac{6x^2}{2} - 4x + c$ $y = \frac{3x^2}{2} - 4x + c$		
	y = 2, x =-1, y = 3x ² - 4x + c 2 = 3(-1) ² - 4(-1) + c 2 = 3 + 4 + c c = -5		
	c = -5 $y = 3x^{2} - 4x - 5$ $y = 3(2)^{2} - 4(2) - 5 = -1$		29
3	Given $\frac{dy}{dx} = 1 - 3x^2$ and $y = 2$ when $x = -1$,	4	Given $\frac{dy}{dx} = 6x - 3$ and $y = 3$ when $x = 2$, find the
	find the value of y when $x = 2$.		value of y when $x = 1$.
	Answer: $\frac{dy}{dx} = 1 - 3x^2$		
	$y = \int (1 - 3x^2) dx$		
	_		
	- 4		- 3
5	dy the first start	6	_
	Given $\frac{dy}{dx} = 4 - 2x$ and $y = 5$ when $x = 1$ find		Given $\frac{dy}{dx} = 3x^2 - 2$ and $y = 4$ when $x = -1$, find the
	the value of y when $x = -1$.		value of y when $x = 0$.
	-3		3
7	Given $\frac{dy}{dx} = 3(2x - 1)$ and $y = 5$ when $x = -2$,	8	Given $\frac{dy}{dx} = 5 - \frac{3}{x^2}$ and $y = 1$ when $x = -1$, find
	uл		$dx = 3$ $\frac{1}{x^2}$ and $y = 1$ when $x = -1$, find
	find the value of y when $x = 1$.		the value of y when $x = 3$
	-13		25


UNIT 3.1.4 To Determine the Constant of Integration (II)

	5.1.5 To Determine the Equation of Curve from Gradient Function					
	Example	-	Exercise			
1	SPM 2004, K2, S5 (3 Marks)	2.	The gradient function of a curve which passes			
	The gradient function of a curve which passes		through B(1, 5) is $3x^2 + 2$.			
	through A(1, -12) is $3x^2 - 6x$.		Find the equation of the curve.			
	Find the equation of the curve.		Answer: $\frac{dy}{dx} = 3x^2 + 2$			
	_		Answer: $\frac{dy}{dt} = 3x^2 + 2$			
	Answer: $\frac{dy}{dx} = 3x^2 - 6x$		dx			
	$\frac{dx}{dx} = 5x - 6x$		$y = \int (3x^2 + 2) dx$			
			$y = \int (3x + 2) dx$			
	$y = \int (3x^2 - 6x) dx$		=			
	$=$ $\frac{3x^3}{3} - \frac{6x^2}{2} + c$					
	-32					
	$y = x^3 - 3x^2 + c$ $y = -12, x = 1, \qquad -12 = 1^3 - 3(1) + c$					
	y = -12, x = 1, -12 = 1 - 3(1) + 0					
	Hence $y = x^{3} - 6x - 10$					
	c = -10					
	Hence $y = x^3 - 6x - 10$		$y = x^3 + 2x + 2$			
			y - x + 2x + 2			
3.	The gradient function of a curve which passes	4.	The gradient function of a curve which passes			
5.	č	7.	-			
	through $P(1, -3)$ is $4x - 6$.		through $Q(-1, 4)$ is $3x(x-2)$.			
	Find the equation of the curve.		Find the equation of the curve.			
	Answer:		Answer:			
	$y = 2x^2 - 6x + 1$		$y = x^3 - 3x^2 + 8$			
5.	The gradient function of a curve which passes	6.	The gradient function of a curve which passes			
5.	through A(1, 6) is $5 - 3x^2$.	0.	through R(2, 3) is $6x^2 - 4$.			
	÷					
	Find the equation of the curve.		Find the equation of the curve.			
	$y = 5x - x^3 + 2$		$y = x^3 - 4x + 3$			
7.	The gradient function of a curve which passes	8.	The gradient function of a curve which passes			
	through A(1, 10) is $x(6-3x)$.	0.	through A(-1, 7) is $3x^2 + 2x - 1$.			
	Find the equation of the curve.		Find the equation of the curve.			
1 1						
	$y = 3x^2 - x^3 + 8$		$y = x^3 + x^2 - x + 6$			

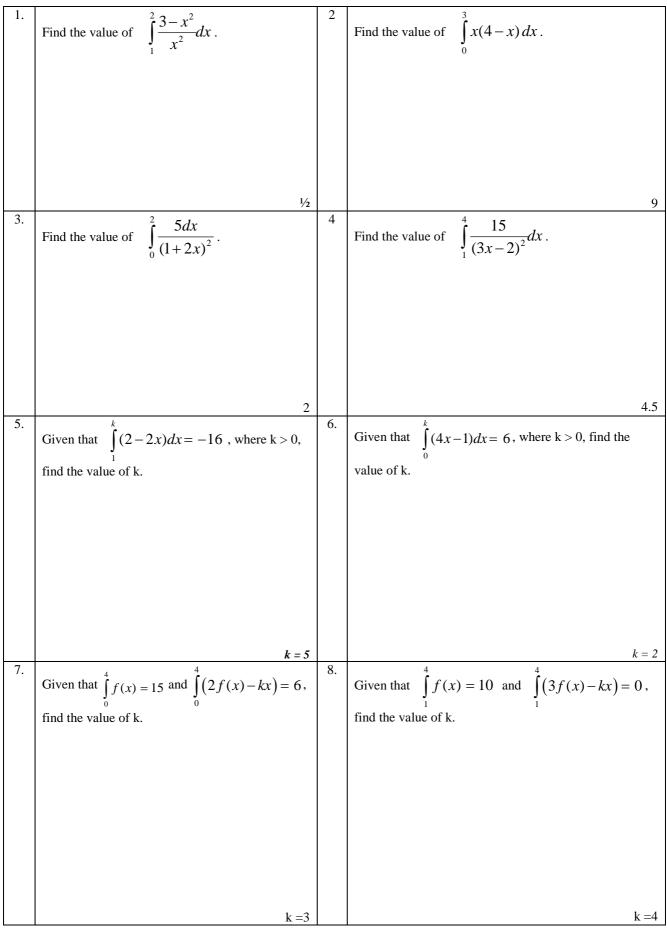
3.1.5 To Determine the Equation of Curve from Gradient Function

UNIT 3.1.6 Integration of the form $\int (ax+b)^n dx, n \neq -1$

	$\int (ax+b)^n dx = \frac{(ax+b)^{n+1}}{a(n+1)} + $	с,	$n \neq -1$
E X A P L E	$\int (3x+2)^4 dx = \frac{(3x+2)^{4+1}}{3(4+1)} + c$ $= \frac{(3x+2)^5}{15} + c$	E X A P L E	$\int \frac{12}{(2x-3)^4} dx = \int 12(2x-3)^{-4} dx$ $= \frac{12(2x-3)^{-3}}{-3.(2)} + c$ $=$
1.	$\int (2x+5)^3 dx =$		$\int \frac{4}{\left(x-3\right)^2} dx =$
3.	$\int (2+4x)^5 dx =$	4.	$\int (x+2)^{-4} dx =$
5.	$\int \frac{3}{\left(2x-1\right)^2} dx =$	6.	$\int \frac{15}{(3x-5)^6} dx =$
7.	$\int 6(2-x)^3 dx =$	8.	$\int 30(4+3x)^{-3} dx =$
9.	$\int \frac{2}{3} (1-2x)^3 dx =$	10.	$\int \frac{15}{2(x-3)^4} dx =$

E X A M P L E	$\int_{0}^{1} (3x+2)^{4} dx = \left[\frac{(3x+2)^{5}}{5.3}\right]_{0}^{1}$ $= \left[\frac{(3x+2)^{5}}{15}\right]_{0}^{1}$ $= \frac{5^{5}}{15} - \frac{2^{5}}{15}$ $= 206.2$	u T r y !	$\int_{1}^{2} \frac{3}{(2x-1)^{2}} dx = \int_{1}^{2} 3(2x-1)^{-2} dx$ $=$ $=$ [1]
1.	$\int_{0}^{1} (2x+3)^2 dx =$ $I_{16} \frac{1}{3} J$		$\int_{4}^{5} \frac{10}{(x-3)^2} dx =$ [5]
3.	$\int_{0}^{1} 16(2+4x)^{3} dx =$ [1280]	4.	$\int_{0}^{1} 6(x+2)^{-3} dx = $ $[\frac{5}{12}]$
5.	$\int_{1}^{2} \frac{6}{(2x-1)^{2}} dx =$ [2]	6.	$\int_{2}^{3} \frac{24}{(3x-5)^{3}} dx =$ [3.75]

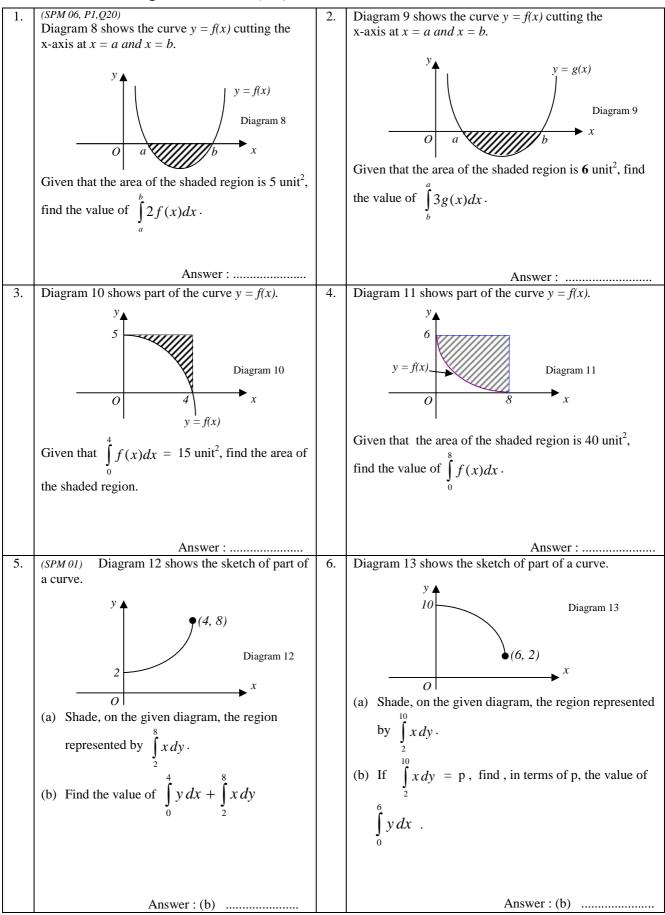
3.2.1 Definite Integral of the form $\int (ax+b)^n dx, n \neq -1$


Give	Given that $\int_{1}^{3} f(x)dx = 4$, $\int_{1}^{3} g(x)dx = 6$. Find the value of				
1.	$\int_{3}^{1} f(x) dx =$	2.	$\int_{1}^{3} \left[2 + f(x)\right] dx =$		
3.	-4	4.	8		
	$\int_{1}^{3} \left[5 f(x) \right] dx =$		$\int_{1}^{3} \left[f(x) - 4 \right] dx =$		
5.	$\int_{1}^{3} \left[4f(x) - 2x \right] dx =$	6.	$\int_{1}^{3} \left[\frac{3f(x) - 1}{2} \right] dx =$		
	1				
	8		5		
7.	$\int_{1}^{3} [3f(x) - 2g(x)] dx =$	8.	$\int_{1}^{3} \left[2g(x) + \frac{1}{2}f(x) \right] dx =$		
9.	$\int_{1}^{3} \frac{\left[6f(x) - g(x)\right]}{3} dx =$	10	$\int_{1}^{3} \left[\frac{3}{2} f(x) + 2g(x) - 1 \right] dx =$		
	6		16		

UNIT 3.2.3 Applications of Definite Integral (I)

1.	k	2.	k
1.	Given that $\int_{-\infty}^{\infty} (2x-3)dx = 6$, where k > -1, find	۷.	Given that $\int_{0}^{k} (2x-1)dx = 12$, where k > 0, find the
	the value of k. (SPM 2004, P1, Q 22)		value of k.
3.	k = 4	4.	4
5.	Given that $\int (3-4x)dx = -20$, where k > 0, find	4.	Given that $\int (6x+1)dx = 14$, where k > 0, find
	the value of k.		⁰ the value of k.
	4		2
5.	Given that $\int_{-1}^{6} f(x) = 7$ and $\int_{-1}^{6} (2f(x) - kx) = 10$,	6.	Given that $\int_{1}^{3} f(x) = 5$ and
	find the value of k. $[SPM '05, P1, Q21]$		1
			$\int (3f(x) + kx) = 23$, find the value of k.
	1⁄4		2
5.	Given that $\int_{-5}^{5} f(x) = 6$ and $\int_{-5}^{5} (f(x) + kx) = 10$,	6.	Given that $\int_{-1}^{4} f(x) = 3$ and
	find the value of k.		
	The up value of K.		$\int_{-\infty}^{4} \left(kf(x) + 6x \right) = 39$, find the value of k. [k=-2]
	$\frac{8}{21}$		
	21		-2

UNIT 3.2.3 Applications of Definite Integral (II)


Questions based on SPM Format (I)

SPM FORMAT QUESTIONS (II)

1.	(SPM 06, P1,Q21)	2.	4
1.	Given that $\int_{5}^{5} g(x) dx = 8$, find	2.	Given that $\int_{1}^{4} g(x) dx = 10$, find
	(a) the value of $\int_{5}^{1} g(x) dx$,		(a) the value of $\int_{4}^{1} 2g(x)dx$,
	(b) the value of k if $\int_{1}^{5} [kx - g(x)] dx = 10.$		(b) the value of k if $\int_{1}^{4} [k + 2g(x)] dx = 50.$
	1		
	(a) -8 (b) $\frac{3}{2}$		(a) -20 (b) k = 10
3.	Given that $\int_{0}^{3} g(x) dx = 5$, find the value of p if	4.	Given that $\int_{1}^{4} g(x) dx = 9$, find the value of p if
	$\int_{0}^{3} [2px + 3g(x)] dx = -3.$		$\int_{1}^{4} [kx - 3g(x)] dx = 48.$
			1
	p = 2		
5.	Given $\frac{dy}{dx} = 4x + 2$ and $y = 10$ when $x = -1$,	6.	Given $\frac{dy}{dx} = 1 - 2x + 3x^2$ and $y = 3$ when $x = 1$,
	find y in terms of x.		find y in terms of x.
			2 3 2
7.	$y = 2x^{2} + 2x + 10$ The gradient function of a curve which passes through P(1, 3) is $8x - 3x^{2}$. Find the equation of	8.	$y = x - x^{2} + x^{3} + 2$ The gradient function of a curve which passes through
	the curve.		Q(-1, 4) is $2x - \frac{1}{x^2}$. Find the equation of the curve.
	$y = 8x - 3x^2$		$y = x^2 + \frac{1}{x} + 4$

SPM FORMAT QUESTIONS (III)

SPM FORMAT QUESTIONS (IV)

	WIFORWAI QUESTIONS (IV)		
1.	(SPM'03)	2.	Given that $\int \frac{12}{(3x-2)^3} dx = k(3x-2)^n + c$, find
	Given that $\int \frac{5}{(1+x)^4} dx = k(1+x)^n + c$,		$(3x-2)^3$ the value of k and n.
	find the value of k and n. [3 marks]		
	$[k = -\frac{5}{3}, n = -3]$		t = 2 n = 2
3.		4.	k = -2, n = -2
	(SPM 02) Given that $4x + 3\frac{dy}{dx} = 6$, express y		Given that $8x - 2\frac{dy}{dx} = 5$, express y in terms of x.
	in terms of x.		
	$y = 2x - \frac{2}{3}x^2 + c$		$y = 2x^2 - \frac{5}{2}x + c$
5.	(SPM 1999) Given that $\frac{d^2 y}{dx^2} = 5x^4 + 1$,	6.	Given that $\frac{d^2 y}{dx^2} = 2 - 6x$,
	when $x = 1$, $y = -3$ and $\frac{dy}{dx} = -2$, find y in		when $x = -1$, $y = 3$ and $\frac{dy}{dx} = -1$, find y in terms
	terms of x.		of x.
1			
	1 1 1		
	$y = \frac{1}{6}x^6 + \frac{1}{2}x^2 - 4x + \frac{1}{3}$		$y = x^2 - x^3 + 4x + 5$

7.	(SPM 2002) Given that	8.	1
	$\int_{0}^{1} (16x^{2} + 10kx + k^{2}) dx = \frac{4}{3}.$ Find the		Given that $\int_{0} (3x^2 + 10kx + 4) dx = 0$. Find the value
	0		of k.
	possible values of k.		
9.	k = -1, -4	10	k = -1
2.	(SPM 01) Given that $\frac{d}{dx}\left(\frac{x^2}{x-1}\right) = g(x)$, find	10	Given that $\frac{d}{dx}\left(\frac{x}{x-1}\right) = f(x)$, find the value of
	the value of $\int_{2}^{3} (2x - g(x)) dx$.		$\int_{2}^{3} (4x + f(x)) dx.$
	the value of $\int_{2} (2x - g(x)) dx$.		
	$\frac{9}{2}$		1
			$13\frac{1}{2}$
11.	Given that $\frac{d}{dx}\left(\frac{x-1}{x+2}\right) = h(x)$, find the value	12	Given that $\frac{d}{dx}\left(\frac{12}{(x+1)^3}\right) = w(x)$, find the value of
	of $\int_{0}^{1} (6-4h(x)) dx$.		$\int_{0}^{1} (6w(x) - 3) dx .$
			$\int_{0} (0 w(x) - 5) dx$
	[4]		[- 66]
L	ניז		[-00]