LINEAR LAW

2.1 Reduce non linear relations to linear form

	Non-linear equation	Linear equation		Y	X	m	C
1	$y = a x^2 + b x$						В
2	$y = ax^3 + bx^2$	$\frac{y}{x^2} = ax + b$					
3	$y = \frac{a}{x} + b$			У			
4	$y = \frac{a}{x} + bx$						A
5	$xy = \frac{a}{x} + bx$				$\frac{1}{x^2}$		
6	x +by = axy			$\frac{1}{y}$			
7	$y = \frac{5}{x} - 3x$						5
8	$y = \frac{a(b-x)}{x^2}$			xy			
9	$y = ab^x$					log 10 b	
10	$y = ax^b$						log ₁₀ a
11	$y = a^2 x^b$					b	
12	PV=a			Р			
2.2 I	Determine values of cons	tants of non-linear relation	ons giv	ven lines of	best fit		
1	The diagram below sho	ows the line of best fit	2	The diagra	am below she	ows the line	of best fit
	for the graph of y^2 again non-linear equation con-	nst x. Determine the necting y and x.		for the graph of y^2 against $\frac{1}{r}$. Determine			

Reduce each of the equations to the form Y=m X+C where a and b are constants.

2.3 Obtain information from

- (i) lines of best fit
- (ii) equations of lines of best fit.

1. Use graph paper to answer this question.

The table below records the values of an experiment for two variables x and y which are related by

$$y = px^2 + \frac{q}{x}$$
 where p and q are constants.

Х	0.8	1	1.3	1.4	1.5	1.7
у	108.75	79	45.38	36.5	26.67	8.19

(a) Plot xy against x³ using scale 2 cm represents 1 unit in x-axis and 2 cm represents 10 units for y-axis.
Hence, draw the line of best fit

[5marks]

[5marks]

(b) From the graph, estimate the value of

(i) p and q

(ii) x when
$$y = \frac{45}{x}$$

[Answer:p=-16.67, q=95, x=1.458]

2. Use graph paper to answer this question.

Х

3

5

The table below records the values of an experiment for two variables x and y which are related by $\frac{y}{x} = \frac{p}{x} + kx$ where p and k are constants.

6

7

y4.74.03.63.02.51.8(a) Plot the graph y against x^2 [4 marks](b) use the graph to estimate the values of
(i) p
(ii) k.[4 marks](iii) x which satisfy the simultaneous equation $\frac{y}{x} = \frac{p}{x} + kx$ and y = 2[6 marks]

[answer: p=5, k=-0.04, x=8.60-8.75]

3. Use graph paper to answer this question.

The table below records the values of an experiment for two variables x and y which are related by $Y=pq^x$ where p and q are constants.

Х	3	4	5	6	7
У	5	10	20	40	80

(a) Plot the graph $\log_{10} y$ against x

(b) Use the graph to estimate the values of

(i) p

(ii) q.

(iii) y when x=4.8 [answer: 1.995, 0.6166, 17.38]

4. SPM 2003 Paper 2 Question 7

Use graph paper to answer this question.

Table below shows the value of two variables, x and y, obtained from an experiment. It is known that x and y are related by the equation $y = pk^{x^2}$, where p and k are constants

Х	1.5	2.0	2.5	3.0	3.5	4.0
у	1.59	1.86	2.40	3.17	4.36	6.76

(a) Plot $\log_{10} y$ against x^2

Hence, draw the line of best fit.

(b) Use the graph in (a) to find the value of

(i)	р	
(ii)	k	[5 marks]

[Answer: p=1.259, k=1.109]

[4 marks]

[6 marks]

9

8

[5 marks]

Linear law

5. SPM 2004 Paper 2 Question 7

Use graph paper to answer this question.

Table below shows the values of two variables, x and y, obtained from an experiment. Variables x and y are related by the equation $y = p k^{x}$, where p and k are constants.

Х	2	4	6	8	10	12
у	3.16	5.50	5.50	16.22	28.84	46.77

(a) Plot $\log_{10} y$ against x by using a scale of 2 cm to 2 units on the x-axis and 2 cm to 0.2 unit on the \log_{10} y-axis. [4 marks]

Hence, draw the line of best fit

(b) Use your graph from (a) to find the value of

(i) <i>p</i>	
(ii) k	[6 marks]
Answer : $p = 1.820$, k	=1.309

6. SPM 2005 Paper 2 Question 7

Use graph paper to answer this question.

Table below shows the values of two variables, x and y, obtained from experiment. The variables x and y are

related by the equation $y = px + \frac{r}{nx}$, where p and r are constants.

		<i>P</i>				
Х	1.0	2.0	3.0	4.0	5.0	5.5
у	5.5	4.7	5.0	6.5	7.7	8.4

(a) Plot xy against x^2 , by using a scale of 2 cm to 5 units on both axes. Hence, draw the line of best fit. [5 marks] (b) Use the graph from (a) to find the value of (i) р (ii) [5 marks] r

Answer : [p=1.37, r=5.48]

7. SPM 2006 Paper 2 Question 7

Use graph paper to answer this question.

Table below shows the values of two variables, x and y, obtained from an experiment. Variables x and y are related by the equation $y = pk^{x+1}$, where p and k are constants.

Γ	Х	1	2	3	4	5	6
ſ	у	4.0	5.7	8.7	13.2	20.0	28.8

(a) Plot log y against (x+1), using a scale of 2 cm to 1 unit on the (x+1) –axis and 2 cm to 0.2 unit on the log y-axis. [5 marks]

Hence, draw the line of best fit.

(b) Use you graph from (a) to find the values of

(i)	р
(ii)	k

[5 marks]

	Non-linear equation	Linear equation	Y	Х	m	С
1	$y = a x^2 + b x$	$\frac{y}{x} = ax + b$	$\frac{y}{r}$	X	a	b
2	$y = ax^3 + bx^2$	$\frac{y}{x^2} = ax + b$	$\frac{x}{\frac{y}{x^2}}$	X	a	b
3	$y = \frac{b}{x} + a$	$y = b\left(\frac{1}{x}\right) + a$	У	$\frac{1}{x}$	b	a
4	$y = \frac{b}{x} + ax$	$xy = b + ax^2$	xy	x ²	a	b
5	$xy = \frac{b}{x} + ax$	$y = b(\frac{1}{x^2}) + a$	у	$\frac{1}{x^2}$	b	a
6	x + by = axy	$\frac{1}{y} = -\frac{b}{x} + a$	$\frac{1}{y}$	$\frac{1}{x}$	-b	a
7	$y = \frac{5}{x} - 3x$	$xy = -3x^2 + 5$	ху	x ²	-3	5
8	$y = \frac{a(b-x)}{x^2}$	$xy = (ab)\frac{1}{x} - a$	ху	$\frac{1}{x}$	ab	-a
9	$y = ab^x$	$\log_{10} y = (\log_{10} b)x + \log_{10} a$	$\log_{10} y$	Х	log 10 b	log ₁₀ a
10	$y = ax^b$	$\log_{10} y = b(\log_{10} x) + \log_{10} a$	$\log_{10} y$	log ₁₀ x	b	log ₁₀ a
11	$y = a^2 x^b$	$\log_{10} y = b(\log_{10} x) + 2\log_{10} a$	$\log_{10} y$	log ₁₀ x	b	2log ₁₀ a
12	PV=a	$P = \frac{a}{V}$	Р	$\frac{1}{V}$	a	0

Answer for 2.1